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1. Introduction

Plane waves are interesting from a variety of different points of view (see [1] for a review

and further references): they provide a rich class of exact solutions to Einstein’s equations,

which describe the neighbourhood of a null geodesic in any geometry by the Penrose limit.

They also include some maximally supersymmetric solutions of supergravity, on which the

string worldsheet theory is exactly solvable. Since the seminal work of [2] on the Penrose

limit of AdS5 × S5, the string theory on the maximally supersymmetric plane wave has

also been of intense interest as an example of holography [3]. The spectrum of strings on

the plane wave is related to the spectrum of a quantum mechanical system obtained from

the dual CFT on the boundary of the AdS5 space. This connection provides stringy tests

of the AdS/CFT correspondence, and has significantly deepened our understanding of this

duality.

However, our understanding of holography for the plane wave is still incomplete: the

duality is more indirect than AdS/CFT, since the dual quantum mechanics is obtained

from the theory on the boundary of AdS, whereas the Penrose limit which gives rise to the

plane wave focuses on a region at the center of AdS. Although a well-defined notion of the

boundary of the maximally supersymmetric plane was obtained by conformal compactifica-

tion in [4], and this boundary turns out to be one-dimensional, a direct connection between

the string theory on this plane wave and a theory living in some sense on its asymptotic

boundary has not yet been constructed. As a result, it has not been possible to extend the

results of [3] to discuss a holographic duality for general plane waves.

One approach to deepening our understanding of the duality for plane waves is to

construct asymptotically plane wave spacetimes, and to look for interpretations of these
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spacetimes in field theory terms. In particular, it is clearly interesting to construct asymp-

totically plane wave black holes and black strings. The construction of such solutions has

been discussed in [5 – 10]. The asymptotic structure of plane waves has also been discussed

from a general point of view, using the causal completion of the spacetime, in [11 – 13].

Another interesting recent development for holography was the construction of a well-

behaved action principle for asymptotically flat spacetimes in [14] (see also [15, 16]), which

was argued in [17] to provide an approach to defining a holographic dual to asymptotically

flat space. This was extended to study holography for linear dilaton spacetimes in [18].

Our aim in this paper is to similarly construct an action principle for asymptotically

plane wave spacetimes, in the hope that this will shed some light on the issue of holography

for plane waves. Our results may also be useful for other investigations of asymptotically

plane wave spacetimes: for example, these methods can be used to calculate conserved

quantities.

To discuss the action for asymptotically plane wave spacetimes, we first need a suitable

notion of what it means for a spacetime to be asymptotically plane wave. In section 2,

we propose a definition in terms of a set of falloff conditions on the metric at large spatial

distances in directions orthogonal to the wave. We start by assuming that the components

of the metric with indices along the spatial directions orthogonal to the wave fall off as

O(r2−d), where r is a radial coordinate and d is the number of spatial directions orthogonal

to the wave, corresponding to the influence of a localised source being spread over a (d−1)-

sphere at large distances. We then need to determine the behaviour of the components

of the metric with indices parallel to the wave; we use the linearised equations of motion

to relate the falloff conditions of different components, by assuming that all components

make contributions of the same order to each term in the Einstein equations. This fixes

the falloff of the other components of the metric. We will show that the known solutions

which asymptotically approach a vacuum plane wave [5 – 7] satisfy our falloff conditions.

We only study solutions of the vacuum Einstein equations; it would clearly be inter-

esting to extend this to include matter, and in particular to supergravity. We will see that

the black string solution of [9], which asymptotically approaches a plane wave solution in

supergravity, does not satisfy our falloff conditions. The extension to include matter may

therefore be non-trivial, as in the AdS case, where the presence of a scalar field can lead

to the existence of more general AdS-invariant boundary conditions for the metric [19].

In section 3, we show that the definition of the action for vacuum gravity introduced

in [14] can be applied to asymptotically plane wave spacetimes with our falloff conditions

without significant modification. We demonstrate that the on-shell action is finite, and that

the variational principle is well-defined. This provides confirmation that this is a useful

definition of asymptotically plane wave, and provides another example where the counter-

term approach of [14] is useful, suggesting that this approach to defining the gravitational

action should have a broad applicability.

We will close the paper in section 4 with some comments and remarks. An open

problem for the future is to apply this definition of the action to calculate the conserved

quantities for the asymptotically plane wave spacetimes.
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2. Asymptotically plane wave falloff conditions

We consider asymptotically plane wave solutions in vacuum gravity. The plane wave so-

lutions in d + 2-dimensional vacuum gravity can be written in Brinkmann coordinates

as

ds2(0) = −2dx+dx− − µij(x
+)xixj

(

dx+
)2

+ δijdx
idxj , (2.1)

where i, j = 1, . . . , d, and µij(x
+) are arbitrary functions subject only to δijµij(x

+) = 0,

which ensures that the solution satisfies the vacuum equations of motion. The coordinates

in the plane wave solution split into two coordinates x± along the direction of the wave, and

the spatial coordinates xi in the directions orthogonal to the wave. In the spatial directions,

we will use both Cartesian coordinates xi, and polar coordinates r, θa, a = 1, . . . (d− 1):

δijdx
idxj = dr2 + r2ĥabdθ

adθb, (2.2)

where ĥab is the metric and θa are the coordinates on the unit (d− 1)-sphere Sd−1.

A general asymptotically plane wave spacetime will have a metric g = g(0)+g(1), where

g(1) will have some suitable falloff conditions at large distance. We will focus on studying

the falloff conditions at large radial distance in the directions orthogonal to the wave. In

the spatial direction that the wave is travelling in, we will consider either perturbations

which are independent of x−, like the wave itself, or perturbations which fall off at large

x−, but we will not explicitly specify the falloff conditions in this direction.1

Considering first metrics which are independent of x−, we specify the falloff conditions

at large r by making two assumptions. First, we assume that the spatial components (in the

above Cartesian coordinate system) g
(1)
ij ∼ O

(

r2−d
)

. These are the same falloff conditions

as for the spatial components of an asymptotically flat metric in d + 1 dimensions. This

seems appropriate because we would expect a perturbation which is independent of x− to

correspond to the effect of a source which is extended along the direction of the wave, but

localised in the transverse spatial directions, so its effect at large r should be diluted by

spreading on the Sd−1.

To fix the falloffs of g±±, g±i, we make a second assumption, that all components make

contributions of the same order to each term in the Einstein equations.2 This is essentially

a genericity assumption, so it should be appropriate for finding the general falloff conditions

on metric components. In vacuum gravity, the linearised equations of motion are R
(1)
µν = 0,

where [20]

R(1)
µν = −1

2
g(0)ρσ ▽(0)

ρ ▽(0)
σ g(1)

µν − 1

2
g(0)ρσ ▽(0)

µ ▽(0)
ν g(1)

ρσ + g(0)ρσ ▽(0)
ρ ▽(0)

(µ g
(1)
ν)σ . (2.3)

1This is similar to the treatment of linear dilaton spacetimes in [18], where the falloffs in the directions

along the brane were not explicitly treated.
2We will not attempt to fully exploit the information in the asymptotic Einstein equations; we just use

them to determine a set of falloff conditions. The consistency of our falloff conditions with the dynamical

equations of motion is demonstrated by verifying that the solutions we consider in the next subsection

satisfy our falloff conditions.
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The idea of our assumption is that the cancellations which give R
(1)
µν = 0 should generically

involve all the terms in R
(1)
µν . The contribution of g

(1)
ij to (2.3) gives

R
(1)
ij ∼ O

(

r−d
)

, R
(1)
+i ∼ O

(

r1−d
)

, R
(1)
++ ∼ O

(

r2−d
)

. (2.4)

Because of the assumption that g
(1)
ij is constant in x−, it does not make any contribution

to R
(1)
−i , R

(1)
+− and R

(1)
−−. Assuming the other terms in g

(1)
µν produce effects at the same order

determines

g
(1)
++ ∼ O

(

r4−d
)

, g
(1)
+− ∼ O

(

r2−d
)

, g
(1)
−− ∼ O

(

r−d
)

, (2.5)

g
(1)
+i ∼ O

(

r3−d
)

, g
(1)
−i ∼ O

(

r1−d
)

. (2.6)

With these falloffs, all terms also give

R
(1)
−i ∼ O

(

r−d−1
)

, R
(1)
+− ∼ O

(

r−d
)

, R
(1)
−− ∼ O

(

r−d−2
)

. (2.7)

The faster falloff conditions required for metric components with an x− index arise

because g(0)−− ∼ r2, so terms in a given component of R
(1)
ij coming from g

(1)
−− have an

extra factor of r2 compared to terms coming from g
(1)
ij . Similarly, the less restrictive

conditions on components with an x+ index are due to the vanishing of g(0)++.

If we consider the more general case, allowing the perturbation to depend on x−, there

will be additional terms in R
(1)
µν involving derivatives ∂−. These terms will also come with

extra powers of r coming from g(0)−−. As a result, if we think of a general perturbation as

composed of a part which is independent of x− and a part which depends on x−, the part

which depends on x− will be required to fall off more quickly than the constant part.3 We

find

∂−g
(1)
ij ∼ O

(

r−d
)

, ∂−g
(1)
+j ∼ O

(

r1−d
)

, ∂−g
(1)
−j ∼ O

(

r−d−1
)

, (2.8)

∂−g
(1)
++ ∼ O

(

r2−d
)

, ∂−g
(1)
+− ∼ O

(

r−d
)

, ∂−g
(1)
−− ∼ O

(

r−d−2
)

, (2.9)

and

∂−∂−g
(1)
ij ∼ O

(

r−d−2
)

, ∂−∂−g
(1)
+j ∼ O

(

r−d−1
)

, ∂−∂−g
(1)
−j ∼ O

(

r−d−3
)

, (2.10)

∂−∂−g
(1)
++ ∼ O

(

r−d
)

, ∂−∂−g
(1)
+− ∼ O

(

r−d−2
)

, ∂−∂−g
(1)
−− ∼ O

(

r−d−4
)

. (2.11)

3Even without this additional factor, the x− dependent parts would be required to fall off faster than the

constant parts. The situation is analogous to the solution for a localized source described in a cylindrical

coordinate system, which involves

1

(r2 + z2)
d−2

2

≈

1

rd−2
−

(d − 2)z2

2rd
+ · · · ,

so the z-dependent term falls off faster than the constant term at large r. The effect of g(0)−− is to make

these contributions fall off even more quickly in the plane wave background.
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We take the above constraints on the asymptotic falloff of the metric to define a class of

asymptotically plane wave spacetimes.

Not all of these components of the metric carry independent physical information; by

an appropriate diffeomorphism, we can set some of the components g
(1)
µν to zero at large

distance. In [18], this diffeomorphism freedom was fixed by choosing a Gaussian normal

gauge, in which the components of g
(1)
µν with radial indices are set to zero. In the present

case, because the directions x± are singled out as special, it seems more convenient to us

to choose a gauge in which

g
(1)
+− = g

(1)
−− = g

(1)
−i = 0. (2.12)

Because of the faster falloff conditions on the x− components, the diffeomorphism which sets

these components to zero will not modify the asymptotic falloff of the other components.

2.1 Comparison to known solutions

There have been a few papers on exact solutions of the Einstein equations which asymp-

totically approach a plane wave. These provide a useful check of our analysis: if we have

an appropriate set of falloff conditions, they should be satisfied by these solutions. The

first such solution was constructed in [5, 6], where a Garfinkle-Vachaspati transform was

applied to a black string solution with a nontrivial scalar field to obtain an asymptotically

plane wave black string,

ds2str = − 2

h(r)
dx+dx− +

f(r) + r2(3 cos2 θ − 1)

h(r)
(dx+)2 + (k(r)l(r))2(dr2 + r2dΩ2

2),

e4φ =
k(r)l(r)

h2(r)
, (2.13)

where

f(r) = 1 +
Q1

r
, h(r) = 1 +

Q2

r
, k(r) = 1 +

P1

r
, l(r) = 1 +

P2

r
. (2.14)

The presence of the scalar φ means that this is not a vacuum solution, but it becomes

a vacuum solution at large r, and it is easy to check that our boundary conditions are

satisfied. The solution is independent of x−, and it has g
(1)
+− and g

(1)
ij going like O

(

r−1
)

,

g
(1)
++ going like O (r), with the other components of g

(1)
µν vanishing. We have written the

string frame solution above but this statement will be true in either string or Einstein

frame.

This was extended in [7] to construct a pure vacuum solution which is asymptotically

plane wave, although it is not smooth in the interior:

ds2 =
1

H(r)

[

−2dx+dx− + f(r)(dx+)2 +
H(r)4

r4H ′(r)2
(dr2 + r2dΩ2

2)

]

, (2.15)
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where

f(r) = 1 + lnH(r) + ξ2(x
+)ψ2(r)(3 cos2 θ − 1), (2.16)

ψ2(r) = (3r2 + 2 + 3r−2)

[

α1 + α2 ln

(

r − 1

r + 1

)]

+ 6α2(r + r−1), (2.17)

H(r) =

(

r − 1

r + 1

) 2
√

3

, (2.18)

and α1, α2 are arbitrary constants and ξ2(x
+) is an arbitrary function of x+. Again, it is

easy to see that this satisfies our definition of asymptotically plane wave. The solution is

independent of x−, and it has g
(1)
+− and g

(1)
ij going like O

(

r−1
)

, g
(1)
++ going like O (r), with

the other components of g
(1)
µν vanishing.

In [8], a solution was obtained by T-duality from a black hole in a Gödel universe. This

solution reduces to a plane wave when the black hole mass parameter is set to zero, but

it is not asymptotically plane wave, as it has components g
(1)
ij going like O

(

r0
)

at large r,

so the sphere is deformed asymptotically. Thus, it does not satisfy our definition, but this

is unproblematic: we would not regard such a solution as a candidate for the appellation

asymptotically plane wave.

Finally, another solution was obtained in [9] by a sequence of boosts and dualities

known as the null Melvin twist. This is a solution in the common Neveu-Schwarz sector of

the ten-dimensional superstring theories, and has

ds2str = −f(r)(1 + β2r2)

k(r)
dt2 − 2β2r2f(r)

k(r)
dtdy +

(

1 − β2r2

k(r)

)

dy2

+
dr2

f(r)
+ r2dΩ2

7 −
β2r4(1 − f(r))

4k(r)
σ2, (2.19)

eφ =
1

√

k(r)
, (2.20)

and

B =
βr2

2k(r)
(f(r)dt+ dy) ∧ σ, (2.21)

where

f(r) = 1 − M

r6
, k(r) = 1 +

β2M

r4
, (2.22)

and the one-form σ is given in terms of Cartesian coordinates xi by

r2σ

2
= x1dx2 − x2dx1 + x3dx4 − x4dx3 + x5dx6 − x6dx5 + x7dx8 − x8dx7. (2.23)

This solution is not vacuum, even at large distances, but at large r it approaches a plane

wave which [9] call P10, which is the two-form equivalent of an electromagnetic plane wave.

We can then write the metric as g = g(0) + g(1), where g(0) is the metric of the pure plane

wave P10, which can be obtained by setting M = 0 in the above solution.

This solution lies outside of the scope of our analysis, since it is not a solution of

the vacuum Einstein equations, even asymptotically. However, we can still observe that
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this solution does not satisfy our asymptotic falloff conditions, as g
(1)
ij ∼ O

(

r−4
)

, so our

input assumption that g
(1)
ij ∼ O

(

r2−d
)

is not satisfied. That is, the spatial falloff of the

metric is not behaving as we would expect based on a localised source, which presumably

means that there are source terms coming from the two-form field B which extend into the

asymptotic region, additional to those associated with the plane wave P10. In addition, the

relation between the different coefficients is not the same as we had: if we define x+ = t+y,

x− = t− y, we will have g
(1)
+− ∼ O

(

r−4
)

, but g
(1)
−− ∼ O

(

r−4
)

, and not O
(

r−6
)

as we might

have expected from the behaviour of g
(1)
ij . It is not clear whether we should regard this

solution as asymptotically plane wave or not; it asymptotically approaches the plane wave

metric P10, but more slowly than we would expect. In particular, the slow falloff of the

spatial components g
(1)
ij is likely to make it difficult to define a finite action principle for

such solutions. It would be very interesting to extend our analysis below to include form

fields so that this case could be directly addressed.

2.2 Conformal structure

We have given a definition of asymptotically plane wave spacetimes above, focusing on the

behaviour of the solution at large r. Our decision to focus on the behaviour at large r

is inspired in part by the previously-known exact solutions, which approach a plane wave

only at large r, and by our interest in the construction of an appropriate action principle,

where it is the r = constant boundary which is expected to be problematic.

In special cases, however, we could take a different approach, and define asymptotically

plane wave spacetimes in terms of the existence of a suitable conformal completion. This

would be closer in spirit to the usual treatments of asymptotic flatness. We will not develop

this approach here; we simply want to make some remarks pointing out that it is really

quite different to the approach we are taking.

In [4], a conformal completion was constructed for the maximally supersymmetric

plane wave, for which the metric is

ds2 = −2dx+dx− − r2(dx+)2 + dr2 + r2dΩ2
7, (2.24)

where dΩ2
7 denotes the unit metric on S7. The conformal completion is obtained by making

a coordinate transformation to rewrite this metric as a conformal factor times the metric

on the Einstein static universe,

ds2 =
1

|eiψ − cosαeiβ |2 (−dψ2 + dα2 + cos2 αdβ2 + sin2 αdΩ2
7). (2.25)

We thus see that the conformal boundary of this plane wave lies at α = 0, ψ = β, and

is a one-dimensional null line in the Einstein static universe. The explicit coordinate

transformation is

r =
sinα

2|eiψ − cosαeiβ | , (2.26)

tan x+ =
sinψ − cosα sin β

cosψ − cosα cos β
, (2.27)

x− =
1

2

(

sinψ + cosα sin β

cosψ − cosα cos β
− r2 tanx+

)

. (2.28)
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The point we want to stress is that when we approach the conformal boundary α = 0,

ψ − β = 0 along a generic direction, say α = γ(ψ − β) for some constant γ, r remains

finite. In these generic directions, it is x− which diverges. Thus, controlling the behaviour

as r → ∞ in a spacetime which asymptotically approaches this plane wave will give little

information about whether there exists a conformal completion with (in some suitable

sense) “the same structure” as for the pure plane wave. Rather, it is the behaviour at large

x− that one would have to study in detail to see if a suitable conformal completion exists.

Thus, the definition of asymptotically plane wave we have introduced is different in

character from a definition based on conformal structure. If a definition based on conformal

structure could be developed, it would presumably be suitable for addressing different

questions from those which can be addressed with our definition. We would also remark that

the above analysis suggests that the known exact solutions, which have a deformation away

from the plane wave which is independent of x−, are unlikely to qualify as asymptotically

plane wave with respect to such a conformal definition of asymptotically plane wave.

3. Action for asymptotically plane wave spacetimes

We have put forward a definition of asymptotically plane wave spacetimes, using the lin-

earised equations of motion to relate the falloff of different components. In this section, we

give our main result, constructing an appropriate action principle for this class of space-

times. We construct our action principle following Mann and Marolf [14], who recently

introduced a new approach to specifying a well-defined action principle for vacuum gravity

for asymptotically flat spacetimes.

For the asymptotically flat case, the action is [14]

S = − 1

16πG

∫

M

√−gRdDx− 1

8πG

∫

∂M

√
hKdD−1x+

1

8πG

∫

∂M

√
hK̂dD−1x, (3.1)

where g is the determinant of the bulk metric, h is the determinant of the bulk metric

pulled back to the boundary, R is the Ricci scalar, and K = hαβKαβ is the trace of the

extrinsic curvature on the boundary. The final term is a new contribution introduced to

cancel the divergences coming from the Gibbons-Hawking boundary term (the second term

above). The function K̂ is defined implicitly by the solution of

Rαβ = K̂αβK̂ − hγδK̂αγK̂δβ , (3.2)

where Rαβ is the Ricci tensor of the metric hαβ induced on ∂M . Thus this additional

boundary term is determined locally by the induced metric on the boundary, in the spirit

of the boundary counterterm approach to constructing actions for asymptotically AdS

spaces [21]. Alternative actions for asymptotically flat spacetimes with a similar philosophy

appeared previously in [22, 23]. See also [24] for related work.

To apply this prescription to asymptotically plane wave spacetimes, we first need

to introduce a cutoff to make the different terms in the action finite. We will cut off the

spacetime by introducing a boundary at some large radial distance, r = constant. Our main

focus will be on boundary terms associated with this boundary; as in the asymptotically

– 8 –



J
H
E
P
0
4
(
2
0
0
8
)
0
8
4

flat case, there is a divergence associated with the Gibbons-Hawking boundary term on

this surface due to the extrinsic curvature of the sphere, and we need to introduce an

appropriate local boundary term to cancel it.

Although our focus is mainly on the r = constant boundary, to make the spacetime

region we consider finite, we also need to introduce some cutoffs in the x± directions along

the plane wave. The symmetry of the background under translations in x− makes it natural

to introduce cutoffs at two constant values of x+, respecting this symmetry. In the simple

case where µij are constants, which includes the cases of most interest for holography,

there is an additional symmetry under translations in x+, which suggests it is natural to

take the other cutoff to be at constant values of x−, respecting this translation invariance.

We will also discuss the calculation of the action for the general case where µij(x
+) are

not constants with this same cutoff. We will see that this choice of cutoff can give a

satisfactory construction for an action even for general µij(x
+), although there are some

additional subtleties associated with the surfaces at constant x−. However, one should

bear in mind that there is no a priori justification for this choice of cutoff in the general

case.

The action for the cutoff spacetime should contain a Gibbons-Hawking boundary term

for each of these boundaries. In the case of the surfaces at x+ = constant, there is a

subtlety, as they are null surfaces, so the trace of the extrinsic curvature is not well-

defined. However, this issue has been previously considered in [25], where it was shown

that a suitable boundary term on a null boundary x+ = constant is

1

16πG

∫

x+=const
dd+1ξσλ∂λx

+, (3.3)

where σλ = 1√
−g∂µ

(

(−g) gµλ
)

, with g being the determinant of the metric on the full

spacetime. We will adopt this prescription here. On the boundaries at x− = constant, we

consider just the usual Gibbons-Hawking boundary term.

On the boundary at r = constant, the Gibbons-Hawking boundary term gives a con-

tribution which will diverge as we remove the cutoff. This divergence is associated with the

intrinsic curvature of the boundary (the background plane wave spacetime has a flat spatial

metric in the xi directions, so the intrinsic and extrinsic curvatures of the r = constant

boundary are related), so we can try to cancel this divergence by adding a Mann-Marolf

counterterm contribution to the action on this boundary.

Thus, the action we consider is

S = − 1

16πG

∫

M
dd+2x

√−gR− 1

16πG

∫

x+=consts
dd+1xσλ∂λx

+

− 1

8πG

∫

x−=consts
dd+1x

√
hK − 1

8πG

∫

r=const
dd+1x

√
h

(

K − K̂
)

, (3.4)

where by the integral over x+ = constants we mean integrals over two surfaces at different

values of x+, with opposite orientations for the normal to the surface, and similarly for the

integral over x− = constants.
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Let us first of all consider the value of this action for the plane wave background (2.1).

This is a vacuum solution, so R = 0. On the surface x+ = constant,

σλ∂λx
+ = σ+ = ∂µg

µ+ = 0, (3.5)

as g(0)++ = 0 and g(0)+− = −1. So the boundary term at x+ = constant vanishes. On the

surface x− = constant, if µij are constant, the only non-zero component of Kαβ is

K+i =
1

2
√

g(0)−−
∂ig

(0)
++. (3.6)

Since h(0)+i = 0, this gives K = 0, and the boundary term at x− = constant vanishes as

well.

In the more general case where µij(x
+) depend on x+, we have

K = K++h
(0)++ =

1

2
√

g(0)−−
∂+g

(0)
++h

(0)++, (3.7)

and at x− = constant, h(0)++ = 1/h
(0)
++ = −1/(µij(x

+)xixj). Hence, this K ∼ O(r−1), and

the contribution to the action is

S− = − 1

8πG

∫

x−=const
K
√
hdx+ddxi ∼ O(rd), (3.8)

so this boundary will make a divergent contribution to the action as we remove the cutoff

at large r. However, in the full action, there are two boundaries at constant x− (at say

x− = ±x−0 ), and they contribute with opposite signs because of the opposite orientations

of the outward normals, so this term will cancel between the two boundaries, making no

contribution to the total action.

Finally, the boundary at r = constant is what we want to focus on, so let us be more

explicit and set up the notation we will use later. Define coordinates on the boundary

xα = {x−, x+, θa}, so the boundary metric is

hαβ =







0 −1 ~0

−1 −µijxixj ~0
~0 ~0 r2ĥab






, (3.9)

with determinant h = −r2d−2ĥ, where ĥ is the determinant of the unit metric on Sd−1.

The normal vector to the boundary is nν = δrν . The non-zero components of the extrinsic

curvature are

Kab = rĥab, K++ = −µijx
ixj

r
, (3.10)

so K = d−1
r . The Ricci tensor on the boundary is

Rαβ =







0 0 ~0

0 R++ ~0
~0 ~0 (d− 2) ĥab






. (3.11)
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Solving (3.2) for K̂αβ, we find that the non-zero components are K̂ab = rĥab and K̂++ =
rR++

d−1 , and so K̂ = d−1
r . Thus K − K̂ = 0 and hence there is no contribution to the action

from the r = constant surface.

Thus, we find that the on-shell action for the pure plane wave is zero. Note that the

action vanishes for any plane wave solution, independent of the values of µij(x
+).

3.1 Finiteness of the action

Next, we consider an arbitrary asymptotically plane wave solution satisfying our asymptotic

falloff conditions, and show that the action of the solution will be finite. Since the metric

g is still a solution of the vacuum equations, R = 0, so the bulk term still makes no

contribution to the action. For the boundaries at constant x+, as in the pure plane wave,

S+ = − 1

16πG

∫

x+=const
dx−

(

dxi
)d
∂µg

(1)µ+. (3.12)

In the gauge we have chosen, g++ = 0, g+− = 1, and g+i = 0, so this term still vanishes.

For the boundaries at constant x−, the contributions to the extrinsic curvature at

linear order in the departure of the metric from the plane wave are

K = K
(0)
++h

(1)++ +K
(0)
+i h

(1)+i +K
(1)
++h

(0)++ +K
(1)
ij h

(0)ij . (3.13)

On these boundaries, we have h(1)++ ∼ O(r−d), h(1)+i ∼ O(r1−d), and

K
(1)
++ = −1

2

g(0)+−
√

g(0)−−
∂+g

(1)
++ − 1

2

g(0)+−g(1)−−

(g(0)−−)3/2
∂+g

(0)
++ +

1

2

√

g(0)−−∂−g
(1)
++, (3.14)

K
(1)
ij = −1

2

g(0)+−
√

g(0)−−

(

∂jg
(1)
i+ + ∂ig

(1)
j+ − ∂+g

(1)
ij

)

+
1

2

√

g(0)−−∂−g
(1)
ij . (3.15)

Thus, the terms which are independent of x− will give a contribution to K ∼ O(r1−d).

This will make a divergent contribution to the integral over a single boundary, S− ∼ O(r2).

However, as in the action for the pure plane wave, this divergence cancels between the two

boundaries, so for asymptotically plane wave solutions which are independent of x−, the

contribution to the action from these boundaries vanishes.

We require that any terms depending on x− fall off at large x−. This implies in

particular that there cannot be any linear dependence on x− near these boundaries, so the

part of the components g
(1)
µν involving x− will fall off faster than the part that is independent

of x− by a factor of 1/r4. The contribution of the x−-dependent part of g
(1)
µν to the terms in

K that do not involve explicit derivatives ∂− will then be O(r−d−3). Thus the contribution

to the action from this part of K is finite, and will go to zero as we take the cutoff in

x− to infinity. There are terms in K
(1)
++ and K

(1)
ij which involve explicit derivatives ∂−:

these make a contribution K ∼ O(r−d−1), giving a contribution to the integral S− which is

logarithmically divergent at large r. However, this contribution comes with some negative

power of x−, so if we take the boundaries at constant x− to infinity at the same time as we

take the boundary at large r to infinity, this contribution will go to zero. This dependence
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on the order of limits is not entirely satisfactory, but it allows us to define a finite action.

It does not seem to conceal any particularly interesting deeper issues.

Finally, we consider the boundary at r = constant. We can write the linear order

contribution to the boundary term in our gauge as

K(1) − K̂(1) = K
(1)
αβ h

(0)αβ − K̂
(1)
αβh

(0)αβ . (3.16)

As
√
h ∼ O(rd−1), we need K(1) − K̂(1) ∼ O(r1−d) to have a finite action. For the term

involving the extrinsic curvature,

K
(1)
αβ = g(1)rrK

(0)
αβ +

1

2

(

g
(1)
βr,α + g

(1)
rα,β − g

(1)
αβ,r

)

, (3.17)

and substituting for g
(1)
αβ it is easy to show that this term is O(r1−d).

To evaluate K̂
(1)
αβ , we linearize (3.2) to give

R
(1)
αβ = K̂

(1)
γδ L

(0)γδ
αβ +

(

K̂
(0)
αβK̂

(0)
γδ − K̂(0)

αγ K̂
(0)
βδ

)

h(1)γδ , (3.18)

where4

L
(0)γδ
αβ = hγδK̂αβ +

1

2

(

δγαδ
δ
βK̂ + δγβδ

δ
αK̂

)

− 1

2

(

δγαK̂
δ
β + δγβK̂

δ
α + δδαK̂

γ
β + δδβK̂

γ
α

)

. (3.19)

Inverting this will give us an expression for K̂
(1)
αβ ,

h(0)αβK̂
(1)
αβ = M (0)γδ

(

R
(1)
γδ −

(

K̂
(0)
αβK̂

(0)
γδ − K̂(0)

αγ K̂
(0)
βδ

)

h(1)αβ
)

, (3.20)

where Mγδ = hαβ
(

L−1
) γδ

αβ
. Recall that the non-zero components in K̂

(0)
αβ are K̂

(0)
++ and

K̂
(0)
ab , and note that in our gauge h(1)++ = 0 on the r = constant boundary. We thus have

h(0)αβK̂
(1)
αβ = M (0)αβR

(1)
αβ −M (0)ab(K̂

(0)
ab K̂

(0)
cd − K̂(0)

ac K̂
(0)
bd )h(1)cd. (3.21)

A lengthy explicit calculation gives that the only non-zero components of M (0)γδ are

M (0)+− ∼ O(r), M (0)−− ∼ O(r2), M (0)ab =
1

2(d − 2)r
ĥab =

r

2(d− 2)
hab. (3.22)

For the second term in (3.21), we have K̂
(0)
ab ∼ O(r), and h(1)cd ∼ O(r−d), so this term is

O(r1−d). For the first term, we express R
(1)
αβ by the analogue of (2.3),

R
(1)
αβ = −1

2
h(0)γδD(0)

α D
(0)
β h

(1)
γδ − 1

2
h(0)γδD(0)

γ D
(0)
δ h

(1)
αβ + h(0)γδD(0)

γ D
(0)
(α h

(1)
β)δ, (3.23)

where Dα is the covariant derivative compatible with hαβ . Using this expression we can see

that R
(1)
+− ∼ O(r−d), R

(1)
−− ∼ O(r−d−2), and R

(1)
ab ∼ O(r2−d), so the first term also makes

a finite contribution (in addition, many of these terms will actually be total derivatives,

which make no contribution to the action).

Thus, we conclude that the on-shell action is finite for the asymptotically plane wave

spacetimes.

4Note that we define L
(0)γδ

αβ so that it is symmetric in both pairs of indices, so this is slightly different

from the corresponding expression in [18].
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3.2 Variations of the action

In addition to being finite on-shell, we would like to see that δS = 0 for arbitrary variations

about a solution of the equations of motion. The variation of the usual Einstein-Hilbert

plus Gibbons-Hawking action would give a boundary term

δSEH+GH = − 1

16πG

∫ √
−hπαβδhαβ , (3.24)

where παβ = Kαβ − hαβK. On the boundaries at x+ = constant and x− = constant, we

have just this term. Therefore if we require δhαβ = 0 on these boundaries, they will make

no contribution to the variation of the action. This is a reasonable boundary condition if we

think of these as fixed cutoffs; that is, if we will keep the coordinate position of the cutoff

fixed as we vary the metric, and do not intend to eventually send the cutoff to infinity.

This is certainly an appropriate approach for the x+ = constant boundary. In some cases,

however, it is more appropriate to eventually remove the cutoff on x−. For this purpose,

we could imagine relaxing this condition to require only that δhαβ decays as we go to large

x−. Since the background metric is independent of x−, any δhαβ which goes to zero at

large x− will produce a contribution to δS which vanishes as we remove the cutoff on x−.

Thus, there is no problem with the variation of the action involving these boundaries.

We turn to the contribution to the variation of the action from the boundary at r =

constant, where we only want to require that the variation δhαβ falls off as quickly as

g
(1)
αβ . On the r = constant boundary, we have the above boundary contribution from the

Einstein-Hilbert plus Gibbons-Hawking action, and we have the contribution coming from

the variation of the new boundary term,

δSMM =
1

8πG

∫ √
−h

(

−1

2
K̂hαβδhαβ + K̂αβδh

αβ + hαβδK̂αβ

)

. (3.25)

To determine hαβδK̂αβ , we need to use the analogue of (3.18) for variations to write

hαβδK̂αβ = Mγδ
(

δRγδ −
(

K̂αβK̂γδ − K̂αγK̂βδ

)

δhαβ
)

, (3.26)

where δRγδ is given in terms of δhαβ by

δRαβ = −1

2
hγδDαDβδhγδ −

1

2
hγδDγDδδhαβ + hγδDγD(αδhβ)δ . (3.27)

The variation can be taken to respect our choice of gauge, so δh−α = 0. Thus, we only

need to consider the variations δh++, δh+a and δhab.

Let’s consider first just δh++ non-zero. The term in δSEH+GH involving δh++ is

trivially zero, as π++ = 0 with our choice of gauge. For the new boundary term,

δSMM =
1

8πG

∫ √
−h

(

K̂++δh++ + hαβδK̂αβ

)

. (3.28)

This expression involves the full metric of the asymptotically plane wave solution we are

considering. For each term, we will explicitly calculate the result for the leading non-zero
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contribution (coming either from g(0) or g(1)). Higher-order terms are suppressed, so if

the first term gives zero contribution to the variation of the action, we do not need to

consider higher orders. In the first term in (3.28), solving for K̂(1)++ using (3.18) gives

K̂(1)++ ∼ O(r−d−1), and δh++ ∼ O(r4−d), so K̂++δh++ ∼ O(r3−2d), and the first term in

the integral is O(r2−d), which vanishes for d ≥ 3. For the second term, we use (3.26), where

there will be a zeroth-order contribution to the first term and a first-order contribution

to the second term. From (3.27), we find that δh++ gives only δR++, δR+− and δR+a

non-zero. Using our previous calculation of the components M (0)αβ , we then have

hαβδK̂αβ = M (0)+−δR
(0)
+− −M (0)abK̂

(0)
ab K̂

(1)++δh++. (3.29)

Now δR
(0)
+− = −1

2h
(0)+−∂−∂−δh++ ∼ O(r−d), so the first term is O(r1−d). Together with

the factor of
√
−h in the integral, this would give a finite contribution to the variation.

However, this leading-order term is a total derivative, because h
(0)
αβ is independent of x−,

so it makes no contribution. Higher-order contributions from this term would not be a

total derivative, but they are suppressed by further powers of r, so their contribution to

the action vanishes in the large r limit. The second term is of the same form as the

contribution considered above, giving a contribution hαβK̂αβ ∼ O(r3−2d). Thus all the

terms coming from δh++ vanish in the large r limit.

We now evaluate terms involving δha+. We find

δSEH+GH = − 1

16πG

∫ √
−hπa+δha+. (3.30)

At linear order, πa+ ∼ hab∂−hbr ∼ O(r−d−1), and δha+ ∼ O(r4−d), so this term is vanishing

for d ≥ 3. For the new boundary term,

δSMM =
1

8πG

∫ √
−h

(

K̂a+δha+ + hαβδK̂αβ

)

, (3.31)

and (3.18) gives K̂(1)a+ ∼ O(r−d−1), so the first term also vanishes for d ≥ 3. In the

second term, having just δha+ gives us all components of δRαβ except δR−− non-zero.

Using (3.26) and our previous calculation of the components M (0)αβ , we then have

hαβδK̂αβ = M (0)+−δR
(0)
+− +M (0)abδR

(0)
ab −M (0)abK̂

(0)
ab K̂

(1)a+δha+. (3.32)

We have δR
(0)
+− = 1

2h
(0)cbD

(0)
b ∂−δh+c ∼ O(r−d), and δR

(0)
ab = 1

2h
(0)+−∂−D

(0)
b δha+ ∼

O(r2−d). Thus, both of the first two terms in hαβδK̂αβ would make finite contributions

to the variation of the action. However, as they involve ∂−, they are total derivatives, so

they actually make zero contribution. As in the previous case when we analysed terms

involving δh++, higher-order contributions from this term would not be a total derivative,

but they are suppressed by further powers of r, so their contribution to the action vanishes

in the large r limit. The final term in hαβδK̂αβ is of the same form as the contribution

to the variation coming from K̂a+δha+, so it goes like O(r3−2d), and all the terms in the

variation of the action coming from δha+ vanish in the large r limit.
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Finally we consider terms involving δhab. We find

δSEH+GH = − 1

16πG

∫ √
−hπabδhab, (3.33)

and since πab ∼ O(r−3) and δhab ∼ O(r4−d), this gives an r0 term which does not vanish

in the large r limit. This term needs to be cancelled by a corresponding term coming from

δSMM . The latter is

δSMM =
1

8πG

∫ √
−h

(

−1

2
K̂hαβδhαβ + K̂αβδh

αβ + hαβδK̂αβ

)

=
1

8πG

∫ √
−h

(

1

2
π̂abδhab +

1

2
K̂abδhab + hαβδK̂αβ

)

, (3.34)

where π̂ab = K̂ab − habK̂. To zeroth order, π̂(0)ab = π(0)ab, so the first term in (3.34)

cancels the non-zero contribution from (3.33). However, the second term in (3.34) also has

a non-zero leading order part, so we need to see that this can be cancelled by a contribution

from the final term. Considering the variation δhab,

hαβδK̂αβ = M (0)+−δR
(0)
+− +M (0)−−δR

(0)
−− +M (0)abδR

(0)
ab (3.35)

−M (0)ab
(

K̂
(0)
ab K̂

(0)
cd − K̂(0)

ac K̂
(0)
bd

)

δhcd.

The terms involving δRαβ give finite contributions which are total derivatives, as before.

For the first two terms,

δR
(0)
+− = h(0)abD

(0)
+ ∂−δhab ∼ O(r−d), δR

(0)
−− = h(0)ab∂−∂−δhab ∼ O(r2−d), (3.36)

and these are total derivatives because h
(0)
αβ is independent of x−. For the other term,

δR
(0)
ab ∼ O(r2−d) involves covariant derivatives with respect to the unit metric on Sd−1, ĥab,

and this term is a total derivative because the only θa dependence in the terms multiplying

δR
(0)
ab is through the covariantly constant metric ĥab. As in the previous two cases, higher-

order contributions from these terms would not be total derivatives, but they are suppressed

by further powers of r, so their contribution to the action vanishes in the large r limit.

We are then left with evaluating the last term in (3.35). Using K̂
(0)
ab = rĥab and M (0)ab =

1
2(d−2) ĥ

ab,

hαβδK̂αβ → −M (0)ab
(

K̂
(0)
ab K̂

(0)
cd − K̂(0)

ac K̂
(0)
bd

)

δhcd = −1

2
rĥabδhab = −1

2
K̂(0)abδhab.

(3.37)

This will cancel with the leading order part of the second term in (3.34), leaving us with

no finite contributions to the variation of the action in the large r limit.

Thus, this action gives a well-defined variational principle for our class of asymptoti-

cally plane wave spacetimes.

4. Conclusions

In this paper, we have given a definition of asymptotically plane wave spacetimes which is

consistent with the known exact solutions, and constructed a well-behaved action principle
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for asymptotically plane wave solutions of the vacuum Einstein equations, following the

work of [14]. The definition of asymptotically plane wave solutions is valid for any solution

which asymptotically approaches a vacuum plane wave. For the action, we considered only

the pure vacuum action; it would be interesting to extend this work to include appropriate

matter fields. It is also interesting to ask if there are non-trivial physically relevant examples

to which our ideas apply.5 For the asymptotically plane wave boundary conditions, (2.13)

provides such an example, but this is not a pure vacuum solution, so our discussion of the

action does not apply to it. A more trivial example is provided by some pp-wave solutions.

For example, consider the vacuum pp-wave metric

ds2 = −2dx+dx− −A(x+, xi)
(

dx+
)2

+ δijdx
idxj (4.1)

with ∂i∂
iA = 0. If A(x+, xi) → µij(x

+)xixj + O(r4−d) as r → ∞, this solution is asymp-

totically plane wave according to our definition, and the action we have defined will be

finite for it. However, this is a rather trivial example, and it would be interesting to con-

struct solutions really corresponding to localised sources in an asymptotically plane wave

background, and we hope to return to this question in future work.

We have just demonstrated that the action is well-behaved; an obvious extension of

this work would be to go on to construct a boundary stress tensor 〈Tαβ(x+, x−, θa)〉, as

was done for the asymptotically flat case in [14] and for the linear dilaton case in [18]. This

could then be used to calculate conserved quantities. The fact that different components of

g(1) fall off at different rates at large r may lead to some interesting subtleties in extending

the previous work to this case; perhaps, as in the asymptotically flat case, there will be

more than one stress tensor, associated with different orders in the asymptotic expansion.

A central motivation for work in this direction is to better understand holography for

the plane wave. In [17], it was argued that a holographic dual of asymptotically flat space

could be constructed on the hyperbola at spatial infinity, calculating two-point functions in

the holographic dual from variations of the action. It is possible that similar ideas could be

applied in this case, but there is no obvious connection between this notion of holography

and the known example. String theory on the plane wave obtained from the Penrose limit

of AdS5 × S5 is dual to a quantum mechanics, so it has observables depending on a single

coordinate, whereas if we were to construct a boundary stress tensor 〈Tαβ(x+, x−, θa)〉 or

two-point functions on the boundary at large r from our action, we would expect them

to generically depend on all the boundary coordinates. Our remarks in section 2.2 on the

relation between our notion of asymptotically plane wave and the conformal boundary of

the maximally supersymmetric plane wave suggest that the boundary at large r we have

focused on is not, at least, the whole story. To understand the relation to holography, we

probably need to study the boundaries at constant x− in more detail, and the information

coming just from large r may be misleading.

This asymptotically plane wave example thus seems to have some interesting differences

compared to previous attempts to study holography for more general spacetimes, and we

5We thank the referee for raising this point.
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hope this work will shed some useful light on the relation between the bulk action and the

holographic dual theory for other spacetimes, which in general remains to be worked out.
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